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FINAL SCIENTIFIC REPORT ON

AFOSR GRANT 84 - 0088

David L. Russell, Principal Investigator
Department of Mathematics
University of Wisconsin - Madison

Madison, WI 53706

1. General. The subject grant supported research work in control of

distributed parameter systems, control of nonlinear systems, and the
mathematical modelling of such systems by the Principal Investigator
and his research assistants during the period Feb. 15, 19384 - Oct.
15, 1985. 1In addition to salary support for the Principal Investi-
gator and his research assistants, funds were used to bring visitors
to the University of Wisconsin campus as scientific consultants for
short periods, to support scientific computing relevant to the re-
search program, to support domestic and foreign travel by the Prin-
cipal Investigator and to purchase needed equipment and supplies for
the UW MIPAC (Modelling, Information Processing and Control) Facil-
ity, for which the Principal Investigator serves as coordinator.
Below we describe these activities in greater detail. A copy of a
recent research article is attached as an Appendix to this report.
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2. Areas of Research Emphasis. During the grant period a wide rang-

ing program of scientific research in mathematical systems theory
was carried forward. In the rest of this section we summarize prog-
ress in:

{a) Control Theory of Distributed Parameter Systems;
{b) Control of Nonlinear Systems;
(c) Modelling of Distributed Parameter Systems;

(d) Coefficient Identification in Distributed Systems.

{a) The Principal Investigator has worked and supervised research
in the area of control of distributed parameter systems for many
vears, developing theories applicable to wave {hyperbolic) processes
and diffusion (parabolic) processes as well as many other areas im-
portant in applications. During the grant period two research assi-
stants were supervised In carrying out doctoral dissertation work in
these areas.

The first of these assistants, Richard Rebarber, received the
PhD. degree in August, 1984. His dissertation was concerned with
control canonical forms and spectral assignment problems related to
control of infinite dimensional systems generically described by

¥ = A X +Bu

wherein the operator A is the generator of a holomorphic semigroup.
Because of recent experimental evidence and related mathematical
modelling work, which we describe under (iii) below, it is now clear
that the most realistic models for vibration of beams, plates, etc.,
are actually systems of this sort, involving frequency-proportional
damping. Rebarber's results deal with the extent to which the closed
loop spectrum of the system obtained with linear feedback u = XK x
can be specified by choice of the feedback operator A.
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A second assistant, Katherine Kime, is expected to receive the
PhD. degree in August, 1986. During the grant period she was parti-
ally supported with grant funds in her research on control of elect-
romagnetic fields, satisfying the Maxwell equations, by means of
electric currents flowing on the boundary of the spatial region in
which the fields are defined. This research has extended earlier
work carried out by the Principal Investigator under AFOSR auspices.
Ms. Kime has been able to demonstrate the controllability of finite
energy states in a three dimensional spherical regicn and, with add-
itional smoothness requirements, in more general regions. We ex-
pect the work ultimately to have implications for design of radar
non-reflecting surfaces, etc.

Bl AL NN Y

(b) We have been interested for some time in the control of non-
linear systems exhibiting self-exzcited oscillations because of their
importance in the study of flutter phenomena in aircraft design.
Emphasis has been placed on systems of the form

v N WS

et

X =Ax +Bu-+C \%

Y = g(x,u,y)

by
LS

et

wherein x is the state of an elastic system with basically linear
dynamics and y is the state of a (generally lower dimensional) non-
linear system interracting with the elastic system to produce non-
linear oscillations whose amplitudes may become large as their fre-
quency approaches one of the resonant frequencies of the elastic
structure. We are concerned not only with the guestion of using the
control input, u, to alleviate the effects of the self-excited osci-
llations in the presence of complete information about the total
system state (xX,y), but also with the guestion of system state esti-
mation and resultant control specification when a lower dimensional
output

[ SRR MU N

-5

‘

w = d(x,vy)

is all that is available. A doctoral candidate, Thomas Svobodny,
was supported during the grant period in the initial stages of his
work in connection with this latter guestion. He has been seeking
to extend to nonlinear systems exhibiting self-excited oscillations
some work done earlier by the principal investigator concerning

2L
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3
N adaptive rejection of periodic disturbances, v(t), in a system
*
XK=AX+Bu+v
E Promising initial results on observability of linear systems with
- time-periodic coefficients are being extended to be applicable to
= the nonlinear systems of interest. We have also been acquiring lab-
ry oratory data on actual oscillating systems to serve as test cases
N for the identification, estimationand control procedures being deve-
j loped in these researches.

(iii) During the contract period our main mathematical modelling re-
': search activity has been in the area of development of mathematical
2 models to replicate the observed frequency-proportional "structural”
:: damping properties of actual beams. While this work has been comp-
leted under a successor grant, AFOSR 85 - 0283, we can state unequi-
vocally that the major conceptual advances were made under the aegis
. of the subject grant, AFOSR 84 - 0088, during the period when the
- Principal Investigator was visiting the University of Florida at
;{ Gainesville. Following many unsuccessful attempts, a model in the
' form of an integro-partial differential equation

L .
P 4 2y I hex,6) (22 0) - 2,0 )ag + B2 = o
o

3t2 tIx 3tax ox*t

. was developed which, with 9 and the "interraction kernel" h(x,%)

correctly chosen relative to the mass density p and bending modulus
T EI, results in very close spectral matching with experimental data
N taken from various types of beams excited into vibratory motion in
a laboratory setting. We have high hopes that this model will find
wide application in theoretical damping considerations relative to

!

jj large space structures and other similar topics of current interest,.
"

>

4 (iv) We have also been interested in the problem of identifying the
. coefficients of a partial differential equation, assumed to lie in a
L particular class of such equations, from data taken from solutions
ﬂ: of the equation. Such problems arise in porous flow problems, where
s the potential function ¢ can be measured in the field and is assumed
. to satisfy an elliptic equation of the form

\'
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with p the permeability of the flow medium and f the source distri-

bution function. A variety of L! and L™ methods admitting approxi-
mate realization in linear programming codes have been studied and
tested computationally with very promising results. A graduate
research assistant, Robert Acar, has been working with the Princi-
pal Investigator in this area.

A second type of identification problem concerns equations of
evolution type describing vibrations of physical continua, such as
the wave equation

%W _ 3 [ 3w ) -
ratz axL kax ] °

or the beam eqguation {(undamped here)

il
o

P2 W 3w
ot2 ox?

3w, 32 [ g1t ]
ox*?
It is assumed that a scalar functional of the state is recorded,
whose power spectrum reveals the natural frequencies of vibration
of the system. The problem is to recover whatever information is
recoverable about the ccefficient functions of the system from the
spectral data at hand. A perturbation procedure based on spanning
and independence properties of the squared eigenfunctions has been
initially formulated and will be a subject for future study.
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3. Other Scientific Activities under AFOSR 84 - 0088,

Ll

ST ]

to the U.W. campus for short-term scientific consulting purposes.
These visitors, with the approximate duratiocn of their stay, their
home affillation and their area of expertise, included:

O

'~ E. Fernandez (3 weeks) VPI, Functional Equations;
- K. Kunisch (3 days) Univ. of Graz, Identification;
" Q. Igbal (3 weeks) Univ. of Karachi, Algebraic Systems.

4
‘ {b) Travel. Grant funds were used to support domestic travel by the
-

Principal Investigator to the 1984 Control and Decision Conference

3 in San Antonio, Texas and to AFOSR headquarters in the spring of

; 1985. Funds also supported attendance by the Principal Investigator
and his assistant, Robert Acar, at the October, 1985 meeting on
Systems Identification and related topics at the University of Okla-
homa in Norman, OK. Foreign travel sponsored by the grant consisted
of the July, 1984 trip to Vorau and Graz, Austria, for the 1984
Vorau Conference on Identification and Control of Distributed Para-
r.. meter Systems and for a week of scientific meetings in Graz with

> Professors Kappel and Kunisch.

(c) Scientific_Computing, Supplies, Equipment. Grant funds were used

to purchase time for scientific computing on the UW MACC Univac 1110
Computer for use by the Principal Investigator and his assistants.
Funds were also used for various categories of supplies and office
needs such as stationery, postage, long distance telephone calls,
etc. A variety of equipment to be used in the construction of labo-
ratory models for study and comparison with mathematical models was
purchased and put into use in the UW MIPAC Model Development Unit at
1307 University Ave., Madison. Certain modifications to MIPAC's
HP5451C Fourier Analyzer were paid for with grant funds and a vari-
ety of related supplies such as computer discs and tapes, graphics
supplies, model construction supplies, etc. were paid for with grant
funds., Details will be provided in the Financial Report prepared

by our Office of Research Administration, Financial.
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4. Publications Issued During the Grant Period.

Grant funds sponsored research resulting in a number of scien-
tific reports issued over the lifetime of the grant and paid for
their preparation and, in some cases, for journal reprints. A list
of these publications follows:

1. On the Dirichlet-Neumann boundary control problem associated
with Maxwell's equations in a cylindrical region. To appear
in SIAM Journal on Control and Optimization, 1986.

2. Frequency/period estimation and adaptive rejection of periodic
disturbances. To appear in SIAM Journal on Control and Cptimi-
zation, 1986.

3. A Floguet decomposition for Volterra equations with periodic
kernel and a transform approach to linear recursion egquations.
Submitted to the Journal of Differential Equations.

4. Mathematical models for the elastic beam and their control-theo-
retic implications. Proc. 1984 Autumn College on Semigroups and
their Applications, Int'l. Centre for Theoretical Physics,
Trieste, Italy, November 1984. To be published by Birkhauser.

The above are by the Principal Investigator. Also sponsored by the
grant was the following, by Richard Rebarber:

5. Control canonical forms and spectral assignment for holomorphic
semigroups. Thesis, University of Wisconsin, Madison, Aug. 1984.
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APPENDIX:

"Mathematical Models for the Elastic Beanm

with Frequency-Proportional Damping"

David L. Russell

University of Wisconsin, Madison
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ON MATHEMATICAL MODELS FOR THE ELASTIC BEAM

WITH FREQUENCY-PROPORTIONAL DAMPINC*

by

David L. Russell+

Coordinator, UW MIPAC Facility
Mathematics Research Center

University of Wisconsin, Madison

* Research supported in part by the U.S. Air Force Cffice of
Scientific Research under Grants 84 - 0088 and 85 - (C2g3

v Department of Mathematics, University of Wisconsin, Madison

Madison, WI 53706
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1. Introduction to Elementary Theories of Elastic Beam Motion

The less-than-dashing, rather pedestrian term "beam" has a
guaranteed soporific effect on all but the more dedicated devotees
0of the science of structural mechanics. But it refers, of course,
to the indispensable linear structural elements (those seeking new

terminology, please take note!) without which many complex constr-
uctions would be infeasible. Consequently, it is not surprizing
that mathematical models for the elastic beam have an ancient and
honorable pedigree attested to by the attentions of some of the
most honored historical and current figures of applied mathematics.

The Euler - Bernoulli eguation for the motion of thin elastic

st two hundred years old. Denoting the mass density,

cth, by p(x) and the second moment cf the modulus of

bout the elastic axis (about which the first moment of
elasticity vanishes) by EI(x), 0 £ x £ L, it is as- i

sumed that the energy associated with motion in the x,w plane, in

which the elastic axis is given by w = 0, can be adequately repre- ‘

sented by :

L
g(w, M) = | [p[iwj2+EI{L2g]2]dx. (1.2)
ot v o ot ox
If it is assumed that no work is done on the beam, either by exter-
nally applied forces or by internal dissipative mechanisms, an easy
appiication of the principle of virtual work shows that the motion
must be governed by the partial differential equation

w N
o2 ° -

he)
@ 'QJ

2
t

a) o
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NERDY
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(3]

b

together with "natural boundary conditions" (four are required in
all) implying that

[}

S
[T
Y

2
t
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~
-
~
<&

A variety of conditions, corresponding to different kinematic and
dynamic assumptions, suffice for this purpose. The "cantilever"”

N
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o configuration, wherein the beam is clamped at one end, say x = C,
' and left free at the other, x = L, is described by
) / - oW — (1 =
LN V‘,\O:t) = Or ‘—‘(Olt) - OI \"")
- abie
N 2 ~2
vy 3%w 3 =)
EI(L) 2-3 (L,t) =0, -%- (EI &) =0 . (1.4)
- I o e x = L
.. If a laterel! force, ¥, and moment, u, act at x = L, then the rignht
" hand sides of the eguaticns in (1.4) are replaced by p and ¢, res-
- pectively. We will describe some other cases subseguently.
" Trhe fayleigh beam model is a fairly modest modification of the
- Euler - Fernoulli model, dating back some hundred years or so. 7To
obtain it the beam element of width ¢ centered at » is additionally
>3 22, 42
‘t. endowed with mass moment of inertia ¢ I_(x). The term I [ =0 |
P £ 3t -
Ja oto
0.
A: ie added to the enercy integrand cof (1.1) and there results the
partic. differential eguation
. ~2 . 3 ~2 2. .
- 2w ITw c I w -
- P - 3. [ I »m‘?---] + =T [EI 2 ] = 0 (1.5)
e It 3 e o - 3
. with corresponding modifications of the boundary conditions which
- we will not detail at this point.
Py
i
-
..'
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Fig. 1.1
The Timoshenko beam mocdel goes back about fifty years and re- .

presents a more radical departure from the simple Euler-Bernoulli

theory than does the Rayleigh model. In the Timoshenko model['TJ p
beam elements undergc not only rigid motions, as is assumed in the
previous two models, but also undergo a shearing motion so that an
originally rectangular w,x cross section is transformed into a par-
zllellogram as shown in Figure 1(b). 7T.ae total rotation angle of
an element is thus

Y (x,t) - e{x,t) + g(x,t) "3

where for small motions the bending angle ¢ is given approximately .
by

cix,t) = 2 (x,t)
o

and g is the angle of shear. Consequently

B(x,t) = w(x,t) - & (x,t)

P
o

an
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The energy expression used :is

W, Q¢ - aw 2 S ow ? v
E(w, 2>, 9,7 ) = [ P[ S0« T T Ky eeS joo* EI[ = | } éx,
O UL IRNEL - ax 3%

where K(x) is the modulus of elasticity in shear. Again, application
of the principle of virtual work guickly leads to the Timoshenko
eguations

,32w A AW ’
~ < - 2 K =% - v = 0 , (16)
52 ol o )
2
1.9 9 (1] + k[ ¢-3) =0 (1.7
‘:3? SXl‘ ox [ axJ ! )

As inspection guickly shows, these eguations have the form 2f two

172
coupled wave equations. In general the wave speeds [K(x)/p(x)|
7
L ., 1172 . . . L
=04 g;Iax)/IP(x)J are different, resulting in a hyperbolic sys-
tem with four families of characteristic curves, consisting of two

pairs, each pair corresponding two waves of the same speed moving in

cpposite directions. The boundary conditions come out of the same
calcuvliations as produce the eguations (1.6) and (1.7). In the
case of tre cantilever configuration these conditions are easily

seen to take the form

W(0,t) = 0, ¥(0,t) = 0, (1.8)
Kz [ o - v ] o= e, B, = ), (1.9)

where, again, ¢ and y are the applied lateral force and moment
respectively, at x = L.

In the constant coefficient case, if Ip and EI are small in

comparison with K, as tends to be the case for thin beams, the first

equation can be differentiated with respect to =, solved for and

2%y
axz

substituted into the second equation to obtain
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which is seen to be a singular perturbation of the Rayleigh eguation
with p/K as the small parameter. Similar, but more complex, results
can be obtained in the variable coefficient case and the boundary
conditions may be re-expressed in terms of w also.

A model related to that of Timoshenko, but more comprehensive,
has rerently been developed by Antman [ A ], and there are many

others. *4%—o4~1he~fe&a&ive4y—s*mp}e—m9de4s—a¥e—¢§aé&%eena&4y—cam

a1 > + In this regard, from our point of view, it is
preferable to let the beams "speak for themselves". Figure 1.2 shows
the logarithmic power spectrum for excited vibrations of a thin
steel beam, measured in the UW MIPAC laboratory. The peaks evident
in the graph correspond to the natural frequencies of vibration. In
this case they conform quite nicely to those predicted from the
Euvler - BZernoulli theory with very slight corrections from the Ray-

leigh model proving helpful in the higher ranges.
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2. Internal Damping Mechanisms.

In traditional applications it is possible to ignore internal
damping effects to a large degree. This is the case because, in
those applications interest is largely confined to static deforma-
tion or, at a slightly more sophisticated level, to the vibrations
produced by periodically imposed loads, such as might be produced,
for example, by a train of heavy cars crossing a bridge or a power-
ful rotating engine mounted on an aircraft wing. Damping effects
in these cases can be largely ignored because the standard rule of
design is to keep the natural frequencies of vibration of the struc-
ture well separated from the frequencies of expected periodic loads.

As aircraft have grown ever more sophisticated and, particular-
ly, as the cons*ruction of platforms in space has been contemplated,
it has become increasingly necessary to take internal energy losses
into account. As structures have grown lighter and stronger they
have alsc become more elastic and hence more subject to vibration
problems. At the same time, pointing accuracy and platform stabil-
ity regquirements have made the suppression of such vibrations abso-
lutely essential. It has become necessary to augment natural cdamp-
ing by the introduction of active control mechanisms and/or care-
fully matched passive damping systems. Paradoxically, as more elas-
tic structures with less inherent damping have evolved, and as ac-
tive control has increasingly been brought to bear, the importance
0of a thorough understanding of natural damping mechanisms and of a
capability to accurately estimate its effects has become more,
rather than less, essential. This is true because artificial damp-
ing achieved through active control implementation is inevitably
limited in band width; at higher frequencies its effectiveness de-

creases or disappears entirely - indeed, phase lags may result in
positive, rather than negative, work being done by the control
forces on the higher freguency modes. That the controls used are

generally effective is largely thanks to the fact that natural damp-
ing mechanisms tend to become stronger with increasing freguency,

so that artificial controls can concentrate on suppression of the
modes associated with lower frequencies, leaving higher frequency
"spillover" effects to be "mopped wp" by the strong internal damping
operative at the higher end of the spectrum. As internal damping
decreases, It is ever more important to be able to estimate its
precise strength so that the band width requirements for the applied
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active controls can be appropriately specified.

That damping rates tend to increase with freguency has long
been understood, Thus simplistic models for damping such as

[%QJRJ Pa?g + QWQH + Qﬁz ( EI Qfg ] =0 ,

ot o ox
are geweva”y wed &Jf‘uk'/e.
which produce uniform damping rates. sannoet be—takenseriocusty.
The recognition that damping rates in beams increase with increasing
frequency goes back at least to Lord Kelvin in Britain and Robert
Voigt, a distinguished German physicist, both working at the end of
the last century [N ]. The Kelvin - Voigt damping model applies, in
principle, to the vibrations of any linear elastic system. The
model hypothesizes that, whatever the linear operator describin
the elastic restoring forces may be, the damping forces involve a
positive multiple of that operator acting on the system velocity
rather than the displacement. This theory, modifying the basic
Euler - Bernoulli model, yields an eguation which may be taken to
have the form

2w 5% 22w 52 2%w
pY o+ 2yp 2 [ ET &Y ] 2 [ 1 2% } =0
ot St ox ox ox
with apprepriately modified boundary conditions. If the fourth

order elasticity operator is denoted by

Aw ~ 1
- P

A2 2
we (= 5E )

D

then the operational form of the equation is

2
dcw dw .
. + 2y A=— + Aw = 0O (2.1)
at? dt \

If the eigenvalues of the positive self-adjoint operator A are X, ,

so that the natural freguencies of the undamped system are W =

(xk)1/2, then the damped system (2.1) may be seen to have exponen-

. G- .t
tial solutions e ©

P where @ is the corresponding eigenvector of




A and 6} satisifes the gquadratic eguation

2 2 2
Gk + 27uk Gk + uk - O

given by

i/2
J

ck = —?Uk2 i { Yzwk4 - Uk (2.2)

Assuming 7 to be small, we see that the ¢ are complex for some

finite number of values of k with the damping rate proportional
to the sguare of the frequency. Critical damping occurs for o =
1/v; for W larger than this the modes are overdamped with one of

the valiues given by (2.2) going to -~ and the other tending to

the value -2

;T' The values Cr in fact, lie in the locus shown

in Figure 2.1, censisting of a circle of radius %? ., centered at
=

the point (};,O) and the portion of the negative real axis to the

left of (:i,O). For very smalil values of y all we would expect

to see would be the quadratic dependence of the damping rate on the
frequency. Whether the overdamping predicted by the model has ever
been obhserved in the laboratory is unknown to this writer but it

seemns, on the face c¢f it, to be unlikely.




———0—0—00-0

(-T/Y}O) (-1/27,0) Real axis

Fig. 2.1

In any case, as we will document in the final section of this
paper, our experiments at UW MIPAC, in agreement with experimental
data acguired by many other researchers, indicates a predominantly
linear relationship between the damping rate and the freguency; a
behavior widely known as structural damping, 1We will also see, both

from the experimental and theoretical point gf view, that damping
of this sort is by no means a "rule of nature"; indeed there is
some reasons to believe that it may only apply to thin beams for
which the Euler ~ Bernoulli model is adeguate in the conservative
case. More on this later.

There is no difficulty in obtaining mathematical models which
exhibit this sort of damping/frequency relationship. Representing
an arbitrary linear oscillator, without damping, by

2
dW , aw =0 ,
dt
the simplest mathematically viable example of a system exhibiting
structural damping behavior, treated extensively by the author and
G. Chen in [ E ], is given by

Cat At AT AN




& ".. PO . '.. . P - - -
ot TN NN . te % - Lm e '.' LU Tt e %
lfk.fkf;fAftf.c‘g;f*(-r‘i.x‘; PSP AP ISP I IR

-11-

a%w

+ 2y A'*/2w + Aw = O , (2.3)
at®

where A'/2 denotes the positive square root of the positive self-
-adjoint operator A and ¥ > 0. Attempting a solution of the form

ckt . .
e ¢, again, we find now that

6 = (=¥ 2 (22 - 1)1/2) WR

so that, for 0 < % < 1 the ¢, lie on the rays in the left half

plane, shown in Figure 2.2, making an angle
a = tan‘l[w/(l - ?2)]

with the imaginary axis. a= tan-l[‘(/(i—-“/z)]

/7

Imag. axis

Real axis

Fig. 2.2

To explain why we cannot embrace the model (2.3) with unre-
strained enthusiasm, let us consider the constant coefficient case
wherein

¢ - St e e et T .- C e AT AT e . P A




4

3]
b3

aw = EI

(2.4)

+

A
D

X
Let us denote boundary conditions for this operator generically by
< 9, w> =0, (2.5)

where ( is a linear functional defined on the domain of A. We will
say that the boundary conditions given for A are paired if for each

boundary condition (2.5) appearing in the set, the condition
< 0, w'' > =0 (2.6)

appears in the set also. Examples include hinged endpoints, for
which (taking the endpoint in guestion to be x = © )

2
wi0,t) = 0, EI 3V2° (0,t) = 0,

.r
S

QW

and freely clamped endpoints for which {(constant coefficient case)

‘O

, 43
M o(0,t) = ¢, - EIPW (0,t) =0
x ox

L

For paired boundary ccnditions the positive square root of the

4 2.,
fourth order operator g-z is - i‘? and, redefining ¥ slightly, the
X ox

nocified Euler equation in this case takes the form

2 4

3
AW _ 5., _OTw oW _
P 8t2 2% 8t8x2 + EI 8x4 o . (2.7)

In this eguation the damping term is rather easy tc understand from
the physical point of view - it is a lateral force acting on the
beam which is negatively proportional to the bending rate.

In those cases where the boundary conditions for A are not
paired, as in the case of clamped or free endpoints, respectively
corresponding to
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w(0,t) = 0, & (0,t) = 0,
125 4
82w 83w
ET -9 (0,t) = 0, - EI 3 (0,t) =0,
- ox

for exanmple, the positive sguare root of the fourth order operator
is not the negative second order operator and the nature of the
damping term in (2.3) is such as not to admit a ready physical in-
terpretation in terms of the properties of standing waves in the
beam. I1f the meoticn is concelived of in terms of travelling waves
g from the boundaries of the beam then, since the speed of
traveliling waves in the Euler-Bernoulli beam varies inversely with
the sguare of the wave length, "square root" damping can be inter-
preted, regardless of the boundary conditions in force, as a state-
ment that the damping exponent is proportional to the distance
covered per unit time by a travelling wave of the particular wave
length In guestion. However, this explanation seems rather suspect

ter pbecause the expression of standing waves in terms of

e a bit of a mathematical artifice here. The expla-

natisn would become guite appealing, however, if it could be demon-
strated that in long thin beams the attenuation of travelling waves
2cally a function of distance travelled rather than other
e author 1s, at the present time, unaware of any research
wi.lich may have been carried out in this direction.

ilosophy in our modelling work is that a proposed
rmathenaotical nodel for g physical system must:

! Be well-posed from the mathematical point of view;
{ii) Replicate the physical phenomena observed;

(iiiy Involve only equations all of whose terms can be assigned
a direct physical meaning in terms of observable systen
properties or characteristics.

Where the boundary conditions on the beam are not paired, the model
7, at least as far as we understand it now, does not meet the
third criterion stated and must, consequently, not be accepted as a
viable model at the present time. The apparent necessity of discar-

iny this model under the circumstances just described represents a

ai
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real loss because the system (2.3) has very attractive mathematical
properties, as outlined in [ E ].

Since the middle term in {2.7) has a ready physical explana-
tion as the rate of change of bending, it is tempting to try to use
this eguation whatever its disadvantages. If no modifications of
*he boundary conditions are made, as compared with the Euler - Ber-
noulli conditions, it is not true in general that the energy is mon-
otone decreasing. Consider, for example, the cantilever case and
the initial state

w(x,0) = O, QH(X,O) = 52 o 243 4 1.4

ot 3 6
(Note that ¥ is only required to lie in LZ[O,L] for finite energy
at
solutions, i.e., solutions in the state space HQ[O,L] bl L2[O,L]
appropriate tc the corresponding semigroup, and thus need not satis-
fy the boundary conditions imposed on w at the free endpoint x = L.)
L 3

1 )

Sostwie,ty, )] = 2y f M(x,0) EH¥ o (x,0) dx = 1/21

d< ok t=0 $ 0 ot otox

so that the energy is actually increasing during some interval after
t = 0, rather than decreasing.

Undaunted by this, it is tempting next to see if some modifi-
cation of the Euler - Bernoulli boundary conditions will result in
solutions of (2.7) having monotone decreasing energy at all times.
One can realize this by modifying the zero lateral force condition
applyinc at an end point to

2 43
—2y 9W _ gr &7V

T o . (2.8)
3tox ox

and one then £finds, for smooth solutions, that the rate of change
=

of enerzy is equ
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oba2, L2
—2y J [ - ] dx £ 0 . (2.9)
0 Stox
Unfortunately our satisfaction is short - lived, for we realize that

the beam with free endpoints has purely inertial solutions

w(x,t) = W + wlt + WoX + wstx

]

for whiszih (2.9) has the value —2}'Lw32 < 0 for Wa # 0 even though no

energy dissipation should take place in such motions; we have over
done our attempt to introduce damping here. Nevertheless, the exer-
cise is not guite a total loss. If we work a little harder and
change (2.8) to

W oagy W 2Y ( (L, t) -9(0,t) ] =0, (2.10)
dt3: L ot ot

we then find, for smoo*th sclutions, that

L

. - ~2 2
Sogw(, ), (1)) =~2wj [ &=t )
e}

2

IxXIX

dx + QI[QE(L,t)—QE(o,t)]
L5t 5t

ana the energy i1s seen to be non-increasing for all solutions while
remaining constant for the purely inertial motions. Condition (2.10)
seems somewhat unnatural since it is non-local. In fact, we do not
propose {(2.10) as a completely serious solution to our problem, but
this snall success leads in a natural way to the more believable
model which we proceed to discuss in the next section.
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- 3. Form of the Mathematical Model.
Ca
] As we have noted in the previous section, the commonly used
. Euler - Bernoulll beam equation, which will serve as the starting
. point for our discussion here, is based on conservation in time of
b the energy expression (1.1}, i.e.,
z , - 2 A2, 2
3 8’(%,95)=%f[p[§3’J +EI[&—‘5’]]d",
- t =y It X
» wherein w(x,t) is abbreviated to w, g(x) and EI(x) to p and EI, res-
K pectively. We will assume here that p and EI are uniformly positive
N orn 0 £ x £ L, that 5 is continuous, at least, and that EI is at
: leact piecewise twice continuously differentiable on [0O,L].
“~-
“~
. Assuming for the moment that the function w({(x,t) describing
- tne evelutisn of the beam displacement is smooth, an easy calcula-
- tion shows thas
B
A L
' -2 Qe ) A2 2 3
T v A R |r ":cw—c’ W+ EI W ITw 5 dx: (3.1)
« as 3 ¢ o 2t 3t“© oxc otox d
arnt othe interraving the seccnd term by parts,
g_g( w(’lt)l—a—w(llt) ) =
dt It
: ! 2 2 2 2., 52 L
3 2 3 ;
) =f(,-~’”’~g—---ix-:l9~‘g]—aw]dx+£1§—‘gaw (3.2)
dot 2t 2t I Y gxc J Jtox A oxc 2tax
o
«*
- 2
- The presence of the angular velocity expression 97w in the under-
’ Itox
- . . . . . =) 32w
lined term indicates that its coefficient, - & [ EI > ] , should
- ox n‘ -
. be interpreted as a restoring torgue, arising due to spatially vari-
. abvle bending of the beam. Realizing that this coefficient reprecents
- a torgue aids us in interpre+ation of th damping term which we ncw

-~
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ntroduce into the system via the definition

[N

A2 A2
T (x,t) =2 J nizog) [ 9%ty - S (g0 | oas. (3.3
) 0 tax Jtax

We tnink of Ty a@s a torque acting on the beam at the point x due

to the differential rotation, as compared with the rotation at x, of
the beam at points § "near" x. In many cases the support of the
"interraction kernel” h(x,¢) would be restricted to a thin strip in
e}

o~
A

. centered on the line x = ¢{. Application of Newton's second law
dictates the symmetry condition

hi{¢,x) = h(x,€). (3.4)

In constant coefficient applications it is convenient to replace
hi:z:,¢) by yh(x-¢), where y > 0 is used to parametrize the strength
f the damping effect and h(n) satisfies the normalization condition

| h(n) dn =1 (3.5)

and the even-ness condition h(n) = h{(-n).

The source of the damping torgue in differential rotation is
illustrated for the case of beams composed of composite mater-
, such as fiberglass, boron and graphite composites and wood.

e may irmagine that long fibers, whose modulus of elasticity, per
unit cross - sectional area, is greater than that of the beam as a
whoie, pass through the beam, held in place »y a matrix material of
some sort. As the beam undergoes deformation of various sorts, beam
elements at x and § may rotate at different rates, reflected by dif-

Dzw 82w . .
ferent values of “-"7 (s,t), &—(t,t). If we think of the fibers
ot ax otox

themselves as having nearly constait length, differential rotation
mist result in movement of the fibers relative to the matrix, with
accompanying friction against, or deformation (largely inelastic) of
the matrix material. The result Is a torgue of the type which we
have just described, since the net motion of the fibers relative to
the matrix, within the individual beam elements, will be different
orn one gide of the elastic axis from what it is on the other side

[EN el
P
[ )]
n

s

b
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when differential rotation is taking place (see Figure 3.1).

SN
~—
\/ \/'
Fig. 3.1
We add the term
L 2
J T (%, 1) 2" (3, 1) dx
0 otox
to both sides of (3.2), so that
L 52
d g(w(,t), (o ,t)) 4 f ™ O W _ gy =
dt ot 0 otox
Yo aw 2w [ 2 [ & 82w ] 5w } a
p - o t Ty, - ~— | EI = x
jo{ at ot? b oox ox? ] 9tox
2 2 L
+ EI Q»g oW ’ = (with a further integration by parts)
ox“ 9tox 'o

ey - 5°
f L p oy . [& (er &y ] -r ]} ax
0

ot
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b5 2. A2 2 L
< +{pr @y oW { & e &%) - rp } 8w ’ . (3.6)
' - Ox< Jtox ox ox ot 0
£
:] Equating the separate parts of {(3.6) to zero (a procedure which can
p be justified by the principal of virtual work) yields the integro-
; partial differential eguation
. 2 2
§ L () ] -
; ot o3t oX ox
o
X 5% 3 b 52w 2w 52 5°w
. oW o~ 2 O r h(r,s)[—m——(x, ) - (g,t)]dg + &, (518Y) =0 (3.7
! ot o v :}th o X GX oOx
.: ana the requirement that, at x = 0 and » = L,
4 92w sz s 2w oW
' grd g M. - [ 9 [pr &9 - g ] MW - o | (3.8)
K Ixn® otsox L oox » 5K ot
L/ Various beam configurations now lead to different sets of boundary
'C conditions. For example, in the case where the beam is clamped at
4 ¥ = 0 and free at x = L (i.e., the cantilever case) we obtain
: ow 52w
w(o,t) =0, % (0,t) =0, &5 (L,t) = 0, (3.9)
- o ax2
. L
- 3 32w - [ 22y 2 7
- -2 leresy 227 ] + 2| n(L,e)[= ¥_(L,t)-2W (¢,t)]ag = 0. (3.10)
- i ¢ - ix=L JO otox Jtox
"
The reader will be able to generate boundary conditions corresponc-
. ing to other configurations with eqgual ease.
1
Equation (3.€) now becomes
L,L
2 ~2 2
2 3 - .
: € clulc, 1), ey = 2] f nz o) (379 (00 -2 () T2, e !
at 5t J 3t3x Stax i atox
< ov o 1
= (since the roles of x and ¢{ are symmetric and h(x,{) = h{¢{,z2})) j
1
~ !
3 d
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- | [ hine) [ S (xe) - Sre ey | S 8-(e e dgas

vo 40 5tox 3% 5tox
nl oL 524 524 A2,
+ h(x,g)( S {(x,t) - (¢, 1) } < {x,t) dedx
vg v L otax Itox otox
bt 82w 2
= -f ( h(x,s)[ £ = (x,t) - (s,t)] d¢ dx £ 0 . (3.11)
0O vo0 L 3tax otox

Moreover, assuming that h(x,${) is not identically zero, the inegual-

2
ity Is strict except in precisely the cases where 27w s constant,
otox
i.e., the inertial motions. Thus energy is strictly decreasing

whenever the bending rate is not identically zero and is conserved

e}
~
when the bending rate, Q—E—ﬁ, vanishes identically.

In general the form of h(x,¢) will depend on the elasticity of
the flibers of the material, as discussed earlier, the distribution
of their lengths, the nature of the interface between them and the
matrix material, etc. The more elastic the fibers and the shorter
their average length, the more the "mass" of h(x,§) will be concen-
trated near the line § = 3.

For perfectly inelastic fibers, all having length L, the same

length as the beam itself, h(x,¢) is a constant; call its value y/L.
Then




2
W (¢,t)ag
otox

L
f h(x,t)
0

so that (3.7) becomes

gy -2y

DTW
2

and the fourth boundary condition of the cantilever case in (3.10),
for example, becones

- Ty S } + 2% aw (L,t) - 2% W (1,t) =

ox » =1L Jtaox L ot
in exact agreement with the model obtained "ad hoc" at the end cf the
previcus secticn.

In the case of metallic beams the "fiber" explanation used
above is not persuasively valid. It may be possible to think of
elongated crystal structures in the material playing much the same
role as the fibers above but the analogy may well be far-fetched.
The evidence for freguency-proportional damping is not guite as comp-
elling at this writing for metallic beams as it is for composite anc
wooder beams, as we will see in our discussion of experimental

r
result in Secticn 9.
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- 4. Additional Properties of the Model.
]{ Application to metallic beams, if valid at all, would necess-
b
:{ arily involve the supposition that the fiber/crystal structures, in
" terms of which the damping action has been explained, are rather
~ short. It is therefore of some interest to investigate the limiting
. form of the eguaticns as the support of h(x,¢) is restricted to
X small neighborhoods of the line x = ¢.
3 To avoid complications with the boundary conditions here, let
_ us consider an infinite beam, so that O is replaced by -~ and L by
s Then the energy loss term in (3.11) is
-
= o 2 2 2
= j J hiz, §) [ S99 (x,t) - 28 (¢ ¢) [Tag ax . (4.1)
o N L 9tdx otax 4
i
Using the change of variables
Y=;(X+g)ln=___(x_£)l
e Ja
:: the integral (4.1) may be rewritten as
o
x r 1 ) 1. 22w (1 12
" p{2o(yen) A y-n ) [ “(yen) 1) ) -2 (L (g drdy .
J_n\j_, v2 N / StSXL/z } Stax{./z }
Now, assuming w sufficiently smooth,
o 2 ~ 1 ~Ne
y P (hotyzmg) = 2 (L) 2 [ [ gren o]
otox -,z AR /2 J2 0 tox V2
, and the integral is
iy : . . - Flaaw
2| h[- _____ (Yy+7), -2 (y-n)|n [ 2[ L (yten).t]a c] dndy. (4.2)
;\: [ A . A= 2 - JoakQK Ve ’
N
<
»
- Consider a family of functions
‘
h)
N -~ ]

. LSRN “~ e T T N T e e e T e e e T e can e
_.\-_-.: .'\ .\-..r (_-\I\.\ S T T




hi{x,¢t) = hy(x,s) Y > 0,

each having the properties assumed earlier for h(x,§{) and such that

LY

13 J_Thy[—%:(y+n), L (y-n)] n? dn = /1 H =

]

vz /? 2 2

while

{j s J [EN =ty ;%:(y—n)} n2 an £ J(v)6(y) .

T V2

where YF{y) and G!/y) are positive integrable functions of y and

lim J(y) = O.
Vil

such that

. . PR
Assuring that - -7 .

w1, 2, L
5;5;2[/3_(110ﬂ),t]d6] | S ()

uniformly for all y in -,+) and for n in [-y,v], where

lim ©(y) = 0 ,
¥-0

the limiting value, as % 0, of the integral (4.2) is seen tc be

2
H(x)[Qiﬂ~ﬂ(x,t)] dx. (4.3)

3taxc
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Returning to equation (3.1) with O0,L replaced by -«, «, res-
pectively, we see that, if the term (4.3) is added to both sides of

that eguation, there results

Lo

d ow [ 2w 2
=-g )rt T ’It + 2 H(x —_— ,t d.=
eSO v 2] H ) Soaztxn) ax

-

[ o2 2w ( o &2W__ | pp 92“’] 97w ] ax

Pp— T = -
5t ate dtax= ox* dtax*

= (after integrating the last product twice by parts w. resp. to x)

e
v
-
<,

+ 2 8z [H —gi‘i—-] + 9 ‘: T _S_ivz] ] dy

b4
P

[ 3]

<
{
+
W D
+
n
QO
t
@
kS
)
QO
]
n
o))
"
n

. = . . .
(Here we have, c¢f course, assumed that w, 9% and their x-derivatives

at
tend to zero at an appropriate rate as |x| » «.) Now the condition
that the Iintegrand should vanish identically corresponds to the Kel-
vin - Voig*%t partial differential equation
2., 2 A3 N a2 ¢ 2.,
p 97w , 5 2T (Mo o [ Er ¥ =0 . (4.4
9t = o ptas 5t5x° ox? ox®

Thus our model is consistent with the Kelvin - Voigt model, under
the stated conditions, as the "mass" of h(x~,¢{) is progressively ncre
concentrated near % = §. For fixed y, equivalently fixed h(x,§),
this means that our model approximates the Kelvin - Voigt model

for vibrations of large wave length, i.e., low frequency. This will
be made more precise In the following material on the spectral prop-
erties of the constant coefficient equation on (-~,~).

Further work of a more precise character will be reguired in
order to obtain a rigorous argument showing that solutions of (3.7)
approach solutions of (4.4) as 3 » 0 and to account for the same
pherorena in finite beams with their attendant boundary conditions.
We have some preliminary developments in this direction, but the
work must appear elsewhere.
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i
P
bﬁ: We pass now to a discussion of the spectral properties of the
b constant coefficient eguation on (-~,~). Taking our earlier remarks
!i into account, the constant coefficient version of our eguation, with
t;: n=x-¢, is
- n'
PR -2y 20 nm | v (1) - Qfﬁ-(x-q,t)]dq + 12 = 0. (4.5)
JtE Srl_ 3tax ot ox*
The function h has the properties described Iin (3.4), (3.Z) and g,
EI are positive constants. Equation (4.5 ) applies for an infinite
beam or, in much the same form, for the periodic case wherein x is
L identified with x + L for some finite L > 0. Our purpose in this
jE paragragph is to study spectral properties of this eguation under the
?::: PARE Rt S Yo+ l N . 3 rh - " SIS S xy ~ 4
- assunption that h € L (-~,~) with h(n) dn = 1. Accordingly., ou:

equation becomes

2w ne Dy . 3°%w tw -
PUIM ooy X s n(n) TR _(xeqt) an + BT &Y =0, (4.6)
3t= St 3n* v_ StIxn~ el
the form which we will use for our analysis. The periodic case may

be developed along quite similar lines.

We begin by looking for solutions of {(4.6) in the form

wi{x,t) = e~ "${x)

pele(x - 292 € {E) + oz f R(n)¢' ' (x-m)dn + EIe(IV)(x) = 0. (4.7
Let
wiT) = I e 1T () dx, - < 1 < o, (4.8)

3
)
*
4
{
-
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1
{
1
-
-
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ot
4
be the Fourier transform of ¢, convergent in an appropriate sense.

X Applying the Fourier operator to the equation we have

;ij ( p02 + 2?72(1 - h(T))es + EI'r4 J $(1) = 0. (4.9)
N The coefficient of ¥(r) must vanish on the support of the function

(or distribution) v(7), leading to the following relationship be-

A tween o and T:

b T2 / 2

7. c=o(r) = = [ -g(m) £/ g(n? - pE1 |, (4.10)
e ¥
=

i with

<,

‘P' -

v g(7) = ¥(1 - h(7)). (4.11)
—~

:ﬁ Here, a5 imrlied earlier, ﬁ(f) is the Fourier transform of the int-
:} erraction kernel hin). From the integrability of h(n) we know that
:; ﬁ(r) is continuous and

-

- lim h(r) = O. (4.12)
s EIEE

:2 For a relatively low level of damping we may assume yz < pEI. Then,
! from (4.10), (4.11), (4.12), it is clear that for large values of 7
- -1 ; . TE1E Y2h{T)-v2(h(r1)2/2)+ o>

N o = T | ~¥(i-h(7))2i, pEI-y? [1 4 ATLIEXAR TiT2) ]

" ' N pEI - ¥ c
I~ 2 . — R

N T | vt i/ pEI? ][ 1 7 Arh(r)
by ¥ v/ fEI-72

>

\. -
5 to first order in h(~) as |T| » . Asymptotically, as |7| -~ -,

Xy v liec along the rays
2

3 —

’ s/

- R, _={z | z=rx(~y 2 i/ pEI-¥° ), r > 0}
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in the left half complex plane.

From (3.5) it is clear that

lim h(-) = 1
| T]>0

so that

o] ——— s
«

i, PEI-pE 4 0(1) ] rolTi 2> 0,

showing that the spectral curve is tangent to the imaginary axis at
the origin. 1In fact, since h is even, two integrations by parts
show th=at

o

5(7) = [ e_lTnh(q)dn =1 - 12 j e_iTq@(n)dq ,
where
=) = hin), 'lim €(n) =0, 1lim &'(n) = 0.
ini-- [ -
Thus, as [~! - 0,
~ 72 2 3 / “
c T - L -¥6eTe t i,/ pEI-vy ] '
Fv
N - .y 2
& = ' sondr = 2 n“hin)dn
Vo [ 2
Thus t longer wave lengths, the spectrum tends to that of the

. a
corresponding Kelvin - Voigt equation, as we should expect from
our earller work in this section since taking long wave lengths
for fizxed h may be seen to be eguivalent to allowing the support
of h(n) to contract to {0}, keeping wave length fixed. A typical
speCtral curve for the beam of infinite length with the proposed
damping mechanisrm is shown in Figure 4.:.

P
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BT e
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Fig. 4.1

For finite beams of large length, L, the spectrum will consist of

discrete points closely spaced along a similar curve in the complex
plane.

From (4.9 ) we have

- 2
h('r) = 1 + _E_I.L <+ M
2y6(T) 2y7*®

Thus, in principle, h{(T), and hence h(n), can be reconstructed from
the knowledge of o6(7T). This remains true in an approximate sense
for finite beams of large length and may prove useful in identifying
actual dissipation mechanisms in the laboratory.

It is interesting to note what happens when the basic, conserv-
ative, system (before damping is introduced), i.e., the Euler - Ber-

noulli model in the above analysis, is replaced by the Rayleigh mod-
el (1.5). The eguation (4.9) is then replaced by

[(p + IPT2)62 + 2912(1-h(T))s + EIT4]+(T) =0

which leads to (cf. (4.10))

................................................
---------------------------
.......
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72 / 2 2
o= =T [ me(n) 2 Ja(n)E-(peI R B ]
+ K
prI T
72 [ c T A2y 2 1yﬂ(¢) ( 2
I =vEiy (prI TT)EI-YT 4 L—7+1V (p+IF72)EI-; ]
4 L
£ I’_’r \//(P+IET2)EI_'}}2

The underlined terms tend to zero as |[r1! = «, so that

Re(s(7)) » =X , |7 » =,
Ip

Im(a(T)) - V/IPEI T o e

In this case the spectral curve is initially tangent to the imagin-
ary axis, for |rv| near zero, and tends to a line parallel to the im-
aginary axis, ¥/I_ unlits to the left, as |7] -» ~.
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? 5. State Spsce, Boundary Conditions, Semigroup Formulation.
ot
<
N ¥rom the form (1.1) of the energy expression for the Euler-
. Bernoulli beam we are led to define the state space as a subspace,
- or in sgome cases a quotient space, of H2[O,L] b4 L2[O,L]. The inner
: product should be consistent with the bilinear form
-~ - oL - -

- <{w,v), (W, v)> = J [p(x)v(x)v(x) + EI(x)w"(x)w"(x)]dx
- 0
v
>
) which, in turn, is related to the energy-motivated seminorm
-~ nL
5 Ciw.vZ? = | [plxd v 12« BT w0 2 lax, (5.1)
N Y0 3

To do this properly it is necessary to say something about the boun-
{i dary conditions, not all of which are created egual. Let B be the
(f set of distribution pairs, in Schwartz's sense, such that the boun-
;: dary conditions on the unforced beam are expressible in the form
‘.

CEQaW> + KBy, V> = o , (51,52) € B . (8.2)

- Some of these boundary conditions represent kinematic constraints
- while cthers are really dynamical equations. The former constitute
< a subset C C D of pairs (g,0), where g is a continuous linear func-
R tional on Hz[O,L], which prescribe certain constraints on the beam
o displacement without any reference to applied forces, such as, e.g.,
b w(0,t) = 0, ¥(0,t) = 0, etc.
. 9
ﬂ Let us dencte the subspace of H2[O,L] consisting of w such thax
;Z <g,w> = C, (g,0) £ C, by Hg[O,L]. The remaining boundary condi-
f tions, corresponding to distribution pairs in B - C, are realdg
o dynamical equations which have to do with certain forces app.ie:
7 to the system or, in the free case, state that certain forces ar-
" zero. Thus, in the cantilever case
o
r
"

‘. - - N K]
Ll - e PRI

ﬁ‘

T .« . e e e e N P . -
ot ot foaon gl g B " s A‘-AiJAﬂ@.}; LLLA‘A_~,A_A._.\.1.~A.W5. RN
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ET9¥(,t) = 0, -2 [EI§—¥](L,t) =0
ox? 3% ox*2

are statements that the applied torque and lateral force, respec-
tively, at ¥ = L, are zero. In the forced case the right hand sides
would be replaced by a moment u and a lateral force ¢. Although

the elements of B - C iIn this cantilever case still have the form
(g.,0}, it is clear that g is not a continuous linear functional on

o]

H[O,L].

Let NC be the subspace of Hg[O,L] X L2[O,L] on which the semi-
nerm {5.1) vanishes. In many cases NC = {0} but not, e.g., in the

case of the beam with two free endpoints, or in the case where one
: ree and the other hinged. Extended in the obvious way

[
LEENDERE

th

ie £r

¥ = [ m(o,r] x L°

5.1} becomes the norm for our state space, H. We
refer to state vectors as displacement and velocity
ejgulvalence class will be understood in those cases

The «tate epace now deflined, we proceed to pose our dynamical
eguations in ontent., With z = (w,v), consider the unbounded

cperator on B ode
w Y

’
v

where the operzationa’ definitions of A and B are

L
CAw) (3, = (EL(x)w' ' (%)), (Gv)(x) = -27-! hix, §)[v'(x)-v'(§)]ds
o Dot 0

The d:ormain

ohthat

lae o true for all (£4.E,) ¢ B. Passing to equi-
F10F2

[G, 0]

£ A consists of those pairs (w,v) € H4[O,L] X H2[O,L]
A

<

&

ralenre ¢lasses where necessary, this is a dense subspace b(&) C ¥
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and &, so defined, is a closed operator. Our model eguation (3.7)
together with the boundary conditions arising from (3.8), and dis-
cussed earlier, is then egquivalent to

z = az . (5.3)

The computation (3.11) can then be used, with a few refinements, to
show that & is dissipative, i.e.,

<z,2z> £ 0, z € D(A)

From this it follows immediately (see, e.g., [ F 1, [ G ]) that A
generates a strongly continuous semigroup, Z(t), of bounded operators

SDONNE S

Tt turns out that the semigroup Z(t) is, in fact, a holomorphic
serigroup, as one might expect from the location of the spectrum in
the constant coefficient, infinite length case discussed earlier. A
general idea of the prosf of holomorphicity proceeds in the follow-
ing way. First of all one studies the operator

A = [ o I ]
-A -G,

where

L
(Gov)(x) = —22- [ H(x)v'(x) ] ., H(x) = j hix,t) 4dg¢ ,
ox 0

the domain of &5 being defined in terms of a suitably adjusted set

of boundary functionals, Bo' The boundary conditions corresponding
to the subset C € B remain unchanged as a subset of BO, so the state
space ¥ remz2ins unchanged. The problem of finding and estimating the
normalized eigenfunction pairs (@k,@k) and associated eigenvalues,

A for A_ is a complicated, but entirely standard [ K ], eigenvalue

o]
problem for a system of ordinary differential equations with bound-
ary conditions of standard typ:. It can be seen, and the details
will appear elsewhere, that the A asymptotically lie along the rays

WOy R TP . TP P )
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arg(z) = t (n/2 + ¢)

in the left half complex plane, where ¢, satisfying 0 < ¢ € n/2,
depends upon p(x), H(x) and EI(x) only, not upon the boundary con-

ditions specified via By The eigenfunction pairs (ék,Qk) may be

shown to form a Riesz basis for #. It is possible that some finite
nunber of the Ak have positive real part because Ay is neot dissipa-

tive in general. The Riesz basis property of the (@k,@P) together
with the asymptotic location of the Ay are all that are reqguired to

show that 6, generates a holomorphic semigroup on ¥ (cf. [ F ]).

Now let (Qk,wk) and )k denote the normalized eigenfunction

pairs and asscciated eigenvalues for £. It turns out that one can
prove that

lim o ([A, - Al) = O,
Dgloe T M

z Bid,. o) (¢, ¥ B < =

From the last relation, using a standard Hilbert space result (see
[ H], p. 208 £ff.) it can be seer that the (wk,wk) also form a Riesz

basis for ¥ so that A is seen also to generate a holomorphic senmi-
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- 6. Spline / Finite Elerent Approximation.

*

uj According to the principle of virtual work [ I ]!, given w(t),
s the trajectory of a mechanical system subject to holonomic constr-
p.. aints H(w(t)) = 0, with forces f;(t), i = 1,2,...,r, acting on the
.o system, the work done by these forces in a small virtual displace-

ment from w(t), at any instant t, vanishes. More precisely, if v

. is a vector such that

- M(w(t)) v = 0

.. ow

=

i: then

? r *

L S fi(t) v=0. (6.1)
- i=1

i It should be noted that the sum (6.1) must include all forces act-
f. ing on the system: inertial, restoring, damping, exogenous, etc. If
) a darmping force, linearly dependent on velocity,

J" s

7. g({t) = - Gw(t),

‘
,i where G is a non-negative self-adjoint operator (matrix in the fin-

ite dimensional case) is introduced into an otherwise conservative

system whose kinetic energy is é&(t)*M&(t) and potential energy is

. éw(t)*Vw(t), M and V also non-negative self-adjoint, M positive

definite, [(6.1) may be expressed as

. [—Mw(t) - Gw(t) - vW(t)]*v =0 (6.2)
- : ,

? where -Mw is the inertial force, -Gw is the damping force, and -Vw
- is the restoring force for the system. Replacing v by w (which must

" be an admissible value for v) we obtain
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f:“ dg ) ’ v

% S (w(t),w(t)) = -w(t)*Gw(t) (6.3)
o+, dt

2,

ry where £ is the energy

,,
%

» g(w(t), w = L{wlt)Mw(t) + w(t)*vm(t)) . (6.4)
-
!
' Formally, the derivation of the equation of motiocn,

-‘"‘
o Mw(t) + Gw(t) + Vw(t) = 0, (6.5)
~

-

Loy is carried cut via (6.2); in practice it is usually inferred from

} (6.3) after a guadratic form -&(t)*G&(t) expressing the energy loss
" through damping is hypothesized. 1In spatially distributed systems the
. forms in which G, V appear In (€.2) may be different from the forms
g in which they appear in (6.3), (6.5) due to transformation via integ-
~ ration by parts (use of the divergence theorem), appearance of bound-
N ary terms, etc.. For example, (6.3) might be expressed as a quadra-
)

~' ~Z,

S tic form in 2%, put application of (6.2) requires that v should be
, x5t

e
)N an admissible velocity - not a partial derivative of such a velocity,
" necessitating a transformation by integration of parts.

“: To implement a spline, or general finite element, approximation
? procedure for the damped beam equation we begin with a finite dimren-
s sional vector & of coordinate functions
2
[h ©®

., y 1

< g = | (6.6)
5 0

: We may, opticnally, assume that

o
b <g.,¢3> =0, i =1,2,...,n, (5,0) €C,

2

so that the Py satisfy the kinematic constraints from the outset, or

these constraints may be imposed in a later step to be described.
For beam applications the basis functions P i=1,2,...,n, must be

such that, with

DA L RCt AR
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‘g® —36”‘
>
3 n
o wix,t) = T wi(t)e;(x) = &*w(t) , (6.7)
U i=1
o . n
. Mg, t) = 3w (1)e5(8) = &(8)*w(t) , (6.8)
. ot i=1
n n
~ FW_(¢,t) = T wi(t)e;(8) = &' (§)*w(t) , (6.9)
N 5tox ) i i
-': * .1=1
\-
~l
; are well-defined quantities at points { where external lateral forces
I and torqgues are to be applied.
N Use of the representation (6.7), with concomitant expression
f. of gw, etc., as in (6.8}, (6.9) implies movement of the beam is sub-
t
7
" ject to certain holonomic constraints; infinitely many of them, in
2 principle, the net effect of which is to allow the system to move in
:: the finite dimensional subspace spanned by the coordinate functions
- ¢4, 1 =1,2,...,n. With such representation of w(x,t), the work -
energy relation with external lateral fcrce ¢ and torgque T applied at
;. the point % = ¢ may be seen to be
v
o’ a ) s ' ’ ’
p-. g--{w(t)*Mz-:(t)+W(t)*VW(‘C)]-W(‘C)*GW(t) = oB(£)*W(t)+T&"(£)*W(t).(6.10)
3 t
¢,

The functions ¢; are often chosen to be independent basis functions

.
PR N

but this is not always convenient at the outset. 1If the ¢; are not

independent there will be a set of r independent linear equations
satisfied by the accompanying coefficients, which we may represent in

. the form

X P w(t) = 0, (6.11)
> where P is an r ¥ n matrix, r £ n - m <n. Let the m Xx n matrix Q

: be such that [g} is nonsingular and define Q w = z. We then have

1’4

N

o

9 rpo _ oA

u (o) w0 = [0

v,
kit e o
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N Writing {Ql = (T,U), we find that w(t) = U z(t) and, with
- N = USMU, V = U*VU, G = U*GU ,
5
E we have, in place of (6.10),
- d._ [ Z(t)*Mz(t) + z(t)*Vz(t)] - 2(t)*Gz(t)
i dt
-, = o(t) &(£)*¥Uz(t) + T(t) &' (§)*Uz(t) , (€.12)
i leading to the eguations
-
-~ ~ o ~ ' ~
) Mz(t) + C z(t) + V z(t) = o(t) U*&(E) + 1(t) U*E' (&) (6.13)
- as the equations of motion for the system.
2 The kinematic boundary cconditions, corresponding to C as descri-
% bed above, may be imposed via (6.11) if desired. The other boundary
= conditions, corresponding to B - C, are never imposed explicitly:; they
come about as particular cases of the dynamical equations in (6.13).
‘; If the ccocordinates to be retained are a subset of the components
j% cf W, we can write w* = (&*, &*), where w comprises the components to
- be discarded and w the components to be retained. Then P is partit-
ﬁ ioned accordingly: P = (5, ﬁ), and we can assume that the r x r matrisx
% P is nonsingular. Then, withm =n - r,
-~ ~ - - _ - —1“ - -~
w=-(P) 'Pw, w= [ (P% P] w=Uw
m
" and we obtain (6.13) again, replacing z(t) by &(t). Computationally
& this is easier because P is r x r while (8] is n x n.
A ) !
“
N In actual computational work it 1s preferable to define the
N energy and dissipation forms in the continuous context and then

approximate them by quadratic forms on finite dimensional spaces. i
q
q
q
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Application of (6.11), (6.12) to the approximate energy and dissi-
pation forms then leads to the finite dimensional approximating

eguations of motion in the form (6.13) with symmetric matrices M,

~, and 6. This procedure is much easier and more reliable than
deriving the eqguations of motion as partial differential egua-
ir. the continuous case and then proceeding to solve those
guations numerically, taking into account all of the boundary cond-
In fact, by the recommended procedure, only the kinematic
boundary cenditions are actually enforced explicitly. The example
of the next section should be helpful in clarifying these matters.
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7. Approximation_and Simulation for the Cantilever Beam System.

Let the interval &

_*,xk] = [xk_l,xk_1+h], h =L/m, k

X
7?‘

and consider general guadratic functions on the intervals
g..(®) = a, + b (x-=zn ) + cL(x-x 1 2 .
k IN k k-1 k k-1
The functions defined on I, by 1, x-x__,, (%-%._,)2, and
k 4 k-1 k-1
by 0 to the rest of ¢ correspond to the functions Fi is=
n = 3m, discussed In the previcus section. With

() oA (), b)) = (b

and w{tlT o= Le v}, (N}, c(t)r),
piecewise wi

points ., k =

wi{x,t) = E{x)*w(t).

these functions,

the beam to have macs density g,

Asouning

.
»Frrnv )2 Pm in“}:" ' :
To= Ly ey ban = D (@ (B eb () (i L ) 4o (1) (3m

kzl I:k_l

,xz'XI s (X2
1

we can define a function w

tc define the energy and dissipation forms in terms cf
ignoring the discontinuities for the present.

the kinetic energy is

[C,L] be divided into m subintervals

=1,2,...

Ik:

extended

1,2,....,0n,

seab (1)),

m-l)

(x,t),
the
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5, - . N ) ! '
c.(t)+h=ak(t)bk<t)+§h3ak(t)ck<t)+§h*bk<t)ck(t

E}
N -
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o4 m 5

¥ m identity matrix.

[ 0 0O 0]
vV = 0 O 0
0 O 4EIhIT

HH

Passing now to the dissipation form, we first of all take the

interraction kernel h(

that m will always
hin) =

oo \,(I‘.ﬁ)

n
8, v = u = 3,
7

3x,¢) to have the form yh(x-¢) where, assuming
a multiple of a fixed positive integer .,

[ni € L’x ,» h{(n) = 0 otherwise.

/% for all values of m used. For the case m

the support of h{x-¢{) is the shaded region shown in
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Let
Sﬁ = { (2, %) I Ap_q $ % £ %, , Xg-1 % L }

Then in Sﬁ we have

ey 3%w
——(x,t) - °
otan toxn

(§,t) = b (t)+2C, (t) (x=%,_)=by(t)-2¢,(t) (6-%, ;)

@

For |k-£| < v we sguare this guantity and integrate over Sﬁ; then

sum over the indicated values of k,{ to obtain the guadratic form

W(t)*G w(t) = 2ykz£<é(t>*,b(t>*,é<t)*) 0 0 0 raft)
) ’ 2 3 )

O Bk, 0 Bk b(t)

0 h3Jp o h'Ky 4 c{t!

where
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{Jk n]f = 0 otherwise;

iLKk. !?J

wR

=3 [Kk,fjg = 1 [Kk,ﬁ‘ = -1, [Kk,c}ﬁ = -1

i N i — .
[hk,ij = 0 otherwise

Additionally we must treat the upper and lower borders of the region

0of support of h(x-%), consisting of triangles Tk‘ Tk’ k =1,2,...,M-v

as shown in Figure 7.1. After integration of the same function as

shown earlier over these regions, followed by summation over the rel-

evant indices, we obtain

m-u ,
Wit)*G,w(t) = 23 T (a({t)*,b(t)*,c(t)*) (O O 0 ] [art) )
— 2 - 3 ' .
k=1 O RTJp 0 PR, b(t)
0 h®Ky. , h*L. , J L c(t)
with 7ﬁ,f and Kk,ﬁ as zbove and
- TRo_ oL o ¢ “ko_ oo,
g, ol = 20 [Lk,ﬁ]ﬂ = 20 by, )0 T 7 Ty phe =
i 11 _ : .
[Lk,ﬁJJ = Q0 otherwise;
After G and G have been computed as indicated we set G = G, + G,

Next there is the matter of the construction of the reduction
matrix U. From the representation on I

wix,t) = a (t) + b(t)(=Z-x. ) + cp.(t)(x-x,_ )2 ,
Kk k k-1 k k-1

SwW
: (x,1) = bp.(t) + 2o () (-2 4)
we see that w!x,t) is piecewise C° on & just in case, for ¥ = 1,2,

.,m-1 we have
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b, () = b {t) + 2c (t)h

For the cantlilever case of our exanple we have, in addition,
a (t) = 0, bl(t) = 0

Acecordingly,
tween

we have the following linear
the coefficients

relationships nclding be-

(1 ©o0. 00 0O 0 0. 00 o o 0. 0 0 [ a. )
-1 1 0. o0 0 ~h 0. 00 -h® 0 oO. 0 0
} cC -1 1. 0 G 0 ~h 0. 0 0 =-k®=cC...0 O -

) ] . . . S
| : o o]
{ .1
boo o -1 1 0 0 0...-h O 0 O 0...-h% 0 : = 0

b"’!

o o0 o. o0 i 0 0. 00 0 0 0. 0 o© o
! 0 oo, 00 -1 1 0. 00 -2h 0 O. 0o o0 ¢,
I 0 © 0. 0 ¢ 0O -1 1... 00 0O -2h O. 0 O :
i : : s Do Do S Coo . ‘m
L 00 0 00 0 00 -1 1 0 0 0...-2h O ]

v v

p P

Let P be the matrix with
Rz = -1, i =1+ 1, rf = 0 otherwise.
> -

Then,

is readlly inverted, giving

Y
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exarple. nce this has been d
carn be calculated readily and,

~

write M In the form %£¢*, with

can be pre- and post-multipled

which the corresponding

“rix

h®I_ - 3h%Q™ ! + 2h%Q7% -

easy computation shows that

o

N

.

t mm-1m-2 ... 1

W N
—
» O O
o O
| S |

ction matrix U can be computed explic-
te nurerical matrix inversion in this
one the matrices M, G and V of (£.12}
using a Cholesky decompositioc

£ lower triangular, the eguation (€.17)

by £7° and (r*) ',

—_ ~ ~1 _ ~ P
- 2 F - - 1~ o
L -7V —sTEG ey T
y -re s T e -7 o 3 PR e R Doy A
We lhave calculated thic matri:, and subceguent.y Itlo elgps -
3 - - .2 - - —_ . p— - - 3 - o 1
ver, for a cantilever beam with = 1, y = .ClI , EI 100 and lengtl
L = 1C. The interraction kern ) wagc tagren to bhe congtar v

with support

restricted tno {z-
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we show the eigenvalue patterns in the upper left half plane for m

= 14, 16 and 24 (not all of the eigenvalues are shown in the last
case). Figure 7.2(b) magnifies the lower right hand corner of Figure
7.2(a) in order to show the pattern of the eigenvalues corresponding
to low freguencies more clearly. Variational considerations account
for the decrease in the natural freguencies as M gets larger but the
increasing negative real parts of eigenvalues, or exponential damp-
ing rates, came as somewhat of a surprize. This property., if it

can be substantiated in general, would be guite desirable for appli-
cations because it would mean that damping rates are systematically
underestimated in approximations of this sort, providing a safety
factor in control applications. From Figure 7.2 it is seen that the
gquadratic dependence of the damping rate on freguency at the low end
of the spectrum has only the most limited range.
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~ ~ L m ¢
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Fig. 7.2(a) ' Fig. 7.2(b)
(Smzll dets indiccte the Jocation of eigenvalues for M = 14,
Hcllcu qets corrtespond to M = 16 and large solid dots sheou
efgenvalues cecrresponding to M = 24. Where the last tuc are

tco clecse to te separated on the graph., a hollow dot with a
heg.'y outer bpcundary (s shown.)




]
Sod
N

~

Y )

P L
'v{'-,'n 5 ‘-/?-

S NS S,

\\'\

'
l:".‘" N n" .. * ." -

23

‘.'I

AR

_46_

8. Some Theory Related to Laboratory Experimentation.

The foregeing results from mathematical simulation can be, anc
have been, compared with related data taken from elastic beam exper-
iments In a laboratory setting. This, of course, is nothing new by
itcelf but perhaps we can claim that we are in a position to look at

: in a different light *than most of our predecessors. Th
auvthor is fo‘;unate to have access to extensive electronic equipment
ing and analyzing data in the UW MIPAC (Modelling, Infor-
essing and Control) Fac111ty and great advantage has been
this experimental capability during the last two years.
Before describing the results of this experimentation program and
: se results to the mathematical simulation
gress bhriefly to describe the experimental
e irherent problems attendant upon the obser-
ames in the laboratory.

v
3
'
O
O
[
[
9] r‘f

gurations easliecst to rezlize, a2t least
ving either clamped ends or free ends.
ection ¢ were obtained in the clampec

Trhe Iaboratory beam cenfi

'Y

i
proz=imately, are those invol
Tne results which we ci%te in S

£ ca

ree {cantil eveV) setting and in a "pseudo" free / free config-
ureation. The clawpesd / clamped beam is easy encugh to work with,

~

and we have Conducred some experimernts in this context, but we do
nnt report on this case here, malinly because we have only one claryp
~

re:zlly ateguate to the task. That the task of reallizing a good ap-

pro:ximetion to a clamped beam endpoint is not at all trivial will be
conmented on at sonme length later in this section. The free / free

case is gqualirfied hy the word "pseudo" because, in fact, the bean is
actunlly 4 vertirally by a very fine nylcen thread. The two

experimentel configuraticns are illustrated In Fligure E.1fa), (b,
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Fig. 8.1(a) Fig. 8.1(b)

Let us begin by discussing this pseudo free / free case; from
now on we simply refer to it as the pseudo free configuration. To
obtain a reasonable facsimile of the free beam, whose actual reali-
zation reguires a gravity-free environment achievable only in space
cr free fall conditions with accompanying difficulties as regards
excitation and measurement, we suspend an elastic beam from a suit-
able suppcrt, preferably a high one, by a long, very fine, nylon
filament; for our purposes 3 1b. test nylon fishing line served ad-
mirably. The accelerometer i1s attached to the beam at the lower -
truly free - end. Just attaching the accelerometer introduces a
variety of problems iIn itself but we avoid that difficulty in the
present article.

We proceed now to discuss the coupled beam / filament system
in some detail. We will do this as if the beam were supported by
a single filament although a double filament arrangement such as is
shown in Fig. 8.1(b) is used in practice.

We are interested in energy losses from the beam through the
supporting filament, so we will model the beam itself via the energy

PR AP LA,
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conservative Euler-Bernoulli eguaticn. Assuming the beam to have
length L, uniform linear mass density p and bending modulus EI, all
constant, and assuming the cord supporting the beam to have length ¢
and linear mass density r, we have as the approximate energy expres-
sien for the system

a2 21 2 v(0,t)1?
$ b 1 + EI |2 dx + & gpL |2
: = | p £ J
e 0 L;t,/ 8}*‘ < ¢
- 0
ot e 2 .2
A D r (27 . e [2Y)7 Jas
< UOL ata \as.

with the constraint w{l,t) = v(0,%*). Here w is the beam deflection
as & function of % and v is the string deflection as a function of
e

s. Fron this energy form one readily derives the equations

]

S A O A I S PP (8.1)
~4 2 R
s Cae
~2. ., 2
r 2% o W o6, 0¢850, (8.2)
3+% 5s°
and the boundary conditons
STY (0,+) = 0, ¥ (0,t) =0, E¥ (L,t) = 0 , (8.3)
9::% ox® 9::2
ET9 % (. 6) + 5L €Y (0,t) + 920 w(n, ) =0 (8.4)
ax S
At s = £ we assume no reflection:
S =T 1 ,,”2 8\7
TU0e,t) o+ 1R S5 (L,8) =0 . (8.5)
ot - >s

It Is not supposed that the last condition is completely realistic.
It simply replaces more complicated assumptions ensuring that very
little, if any, energy entering the the supporting filament, or
st

ring, is reflected back to the bear. We are assuming that waves
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in the string move only in the direction from s = 0 to s = ¢. Then,
in fact, eguation (8.5) is valid with ¢ replaced by s, 0 £ s £ ¢ ;
in particular it is true at s = 0. Using this in (8.4) along with
the constraint w(L,t) = v(0,t) we arrive at
: r b
EI 2% (1,t) + | 9FL _ (rpryi/2) SW (g ¢y = 0 . (8.6)
=10 Lo 4 3t

Since we assure ( large and r small,

/ - .-
T = (rpr)i/é - gk

£

2.1 positive number and the boundary condition (8.6) becomes

]
)
0
3

\

I

ET 2% (r,t) - ~ & (1,t) =0 . (8.7)
faboe S\t

If we define

and assume solutions of the form

with o complex, the resulting eigenfunction eguation is

WVl o et w = 0 . (8.8)
Applying the boundary conditions (8.3) and (8.7) to the general
solution of (8.8}, and setting
A= a , = T/a%

we ob*tain the determinantal condition

[ - cos ML + cosh AL ; sin AL + sinh AL
det f - - - - - - 0 7 [ - - - - - - - - = 0 ,
PN gin 2L + }» sinh ML -2 cos AL + X cosh AL ‘
 -s5i cos L - «i cosh AL | -¢i sin AL - 6i sinh AL !
Seels el e e e e e e e ¥ S el T, ) ) AEAE N -
Fd ‘.g‘.-._(:!:;(;’. “. . \'\ e "ot vy "o, . RN TR ' Py ~ DY
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which simplifies to
22X - 2% cos AL cosh AL + 26i cos AL sinh AL - 261 sin AL cosh AL = C.

If we let
c

and substitute into this equation, we find that, to first order in &M
we have

nxrcosh[gii}]n - 264l 51nhtigg¥ilﬁ] ~ -1k 4 2el cosh(igk—ilﬂ]
l 2(k-1)nm (2k 1I)r

s it is easy to see that, to first order in 1/k,

. ~ (o
0 W1 S
(2k-1)nm
Then, to zero order in 1/k,
~ e % 2..&
108 = 1 .&5 = i .\.254.:1:)2_1"-_ - _2,;:_ .
2 4a“L a“L

Asymptotically, then, the damping of the k-th mode of the bean
due tc the presence of the supporting filament is uniform and the
damping exponent

1

N
]
N
m
t

2EI7 _ 2EI ((I‘,’-L)l'/z _ gel ]
= PL 2

)

3%
it
:

tends to zero as r » 0 and £ » ~, i.,e., as the supporting cori be-
comes very light and very long. We judge, therefore, that this typ=
of support mechanism will not lead to damping rates comparable at
high frequencies to those arising from internal sources in ocur labor-
atory experiments

A sonewhat similar analysis shows that losses due to excitatiocon
of acoustic waves in the surrounding atmosphere by the high frecuenc'
vibrations of the beam will also be asymptotically uniform and thus
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not likely to be confused with internal damping effects.

It has been recognized by various experimenters for some time
that clamped beam experiments are subject tc substantial degrees of
interference from the interraction between the beam and the nearly,
but not gquite, rigid clamping device. In order to have some means
for evaluating the likely degree of error in damping experiments un-
der these circumstances, we ask the reader to consider with us a
clamping arrangement in which the beam to be tested is, as shown in
Fig. 8.2, the relatively thin beam lying in the region # > 0, ex-
cept for a porticn embedded in the more massive beam which occupies
the region x < 0 and which serves in our "thought experiment" (our
apologies to the memory of the originator of that useful expressiont!)
as the clamping device, stiff but not entirely rigid - the unintended
r

-

esult of most of our laboratory clamping attempts.

Fig. 8.2

nv

isplacement of the thin beamr by w(x,t), =x 0,
ents ¢f the thick beam by W(x,t), x £ 0. We

matic"”, i1.e., sincle freqguency, solutions of the

under the assumption that "outgoing" waves, moving

e claniing bear are eventuelly abscrbed and not ref-

Adcyting compler nntation, we represent the displacement of the




thin beam by

i(u2t+awx)

2 24 _
e t-aux) + ye , (8.9)

w{x,t) = ge

where o* = (g ¢t), p and ¢. being the linear mass density and bending
nodulus, respectively, of the thin beam. The first term represents
waves mcving outward from x = 0 to « while the second term represents
waves moving inward toward x = 0 from ~. Because of our assumption
that all waves In the thick beam originate at x = 0 and are not ref-
lected back subseguently, we represent the thick beam displacement by

. z )
Wix,t) = gello”trhAcy) (8. 10)

’ \

where A = /R/ET)

., R, EI the linear mass density and bending modulus,
e heavy beam. It is easy to see that the condi
tizn that no work should be done on the combined system at x = 0 is

. N
P T ~ 1. ' .- PR 4 + 3~
Tenpertlively, OO0 -

a2 <

1 S8 10,6y - e ¥ (0,1) = o,
Nee o ANyl
ox ox
3°W 53w

ET &2 (0,t) - ¢t == {0,t) = 0,
~..3 Ay 2
ol oX

where EI and ¢ have been defined above. Applied to (8.9) and {(5.10C)
thecse lela
{ £ Lo e? flaw? -EIA2,2 ] 2 ] o} ]
| s { = :
CitiaTo ~letaw EIAS®S - J 0 J
Normalizing + to 1 we find that
- 2¢(0° - A -«
o= S22 p = =
EIA“ (A+x) A + «
It Is convenient to renormalize g to A - o, ¥ to A + o so that
3 2 4 _ <\ 3 2++ <
W(::,\} - (A _ D)el((-.) LTS, + (A + G)el(w |8 Gb)a.) . (8 11)
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If the two beams are of the same material, so that E = ¢, then, since
1 becomes small more rapidly than p as the thickness of the thin beam
decreases, we shall have 0 < A < «, -1 < g < 0 so that the outgoing,
i.e., reflected, wave in the thin beam has uniformly smaller modulus
than the incoming wave, independent of the frequency / wavelength.

. 2 2 <
Computing the boundary values of 9”, §~¥, W and Q-% at 2 =0
9t 9x= 9tdx o
with the formula (8.11) for w(x,t), we arrive at dissipative fregquency
dependent boundary conditions

S T p— _ W (g,¢) = L. W (o,1),
ox-< * (A+a) - (A-a)° Otox 4Aw 3tox

2., _ 2
¥ (0,t) = -cu = - 9% (g, ) = 2820 3W (g ¢,
Ju? (A+o) - (A-a)“ 2% 4A 3t

It may be computed that the energy associated with the travelling
wzve 0of wave length 2w/cw, call it €(v,t), computed over a suitable
irite, moving domain with 0 as its left hand boundary in order to
avoeld ¢ being infinite, decays according to

rh

ds(m:t! = —SAPLJS
dt

while the energy itself, over a large domain as described, may be
seen to be proportional to «*. We conclude, as a result, that the
ener;y decay rate exponent must be directly proportional to the

sguare root of the frequency, 2, under these circumstances. It is

clear that such a damping relationship may seriously interfere with
accurate measurement of the internal exponential damping rate, even

though we expect the latter to be proportional to w? rather than o.
While actual clamping mechanisms are not really thick beams as sup-
posed here, this analysis is, we feel, sufficiently realistic to at
least partially explain the very severe difficulties encountered in
trying to measure the damping rates of the natural modes of clamped
beams in the laboratory.
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9., Some Experimental Results.

LUV N

In a laboratory experiment the beam is excited by striking it
smartly in order to set it into vibration. A record such as the one
shown in Figure 9.1 is obtained; in this case the record exhibited
is the graph of an input voltage to UW MIPAC's HP5451C System Analy-
zer proportional to the free endpoint lateral velocity of a canti-
leve» beam clamped at the other end.
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Fig. 9.1

The record initially shows a substantial high freguency component, as
evidenced by the jagged character of the graph on the left hand side.
As the motion continues we observe that the curve becomes smoother,
evidence that the high frequency component is becoming smaller in re-
lation to the overall amplitude of the motion. In fact, the amplitude
of the fundamental mode is not very different at the end of the time
interval from what it was at the beginning; very little damping is
observed at this low frequency.

» e 'e
E R}

To obtain a better appreciation of the guantitative factors in-
volved in the evolution of the beam's motion, the record is divided
into a number of successive segments of equal length. The (Fast)
Fourier transform of each segment is computed and multiplied by its
conjugate to yield the power spectrum for that interval. For most
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purposes it is desirable to form the logarithm of the power spectrum,
which we henceforth call the logarithmic power spectrum. This is
what is displayed in Figure 9.2 (though for a different input record
than the one shown in Figure 9.1). Here two successive logarithmic
power spectra are superimposed to yield the complete diagram. The
peaks evident in each graph correspond to the frequencies of the
natural modes of vibration. Since it is the logarithm which is dis-
played, the vertical gaps between peaks of successive spectra are
proportional to the (negative) real part of the complex system eigen-
value associated with that mode of vibration while the horizontal
position of the peak corresponds to the imaginary part of the eigen-

value, i.e., to the fregquency of that mode. -
e :
S |
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Fig. 9.2

Figures 2.2 through 9.4 display logarithmic power spectra from
a "pseudo-free'" boron-epoxy composite beam, a clamped wooden beam,

and a "pseudo - free" metallic beam , respectively. In these fig-
ures we have added short horizontal bars to more clearly indicate the
successive peak positions. The data is averaged over many experiments,

using the same beam, recording data over an interval of the same _
length, but exciting the beam in different ways in order to adequate- ¢
ly sample all modes. The approximately linear relationship between
damping ratio and frequency is s*rikingly evident for the wooden and
composite beams, less so, but still fairly convincing, for the metal-
lic beam.



----------------

_56_
T T T 1§ ']
- i
- -
i
- !
: 1
" |
B
o
. - T Rl T T
. S30 1000 1500 2000 2500
- HZ LIN
- Fieg. €.3
s
"513 "T’ TS T YT T T T T T T T T T
7 {‘ -

m
@]
i
L]
'
JEUUDS SN U SRS S—

Y .

120

- :f_‘ - -~ - e s R Hiaii b —————————
G - 520 1663 1500 2000 2500
i0 v HZ T Fig. 9.4

s 80 B 4

It might be natural as a result of this evidence of freguency
proportional damping in elastic beams to suppose that all comparable
A elastic structures exhibit the same sort of relationship between
] damping and frequency. Indeed, this was the author's initial predis-
N position. It is here that continued experimentation in the laboratory
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A teaches us not to trust our instincts too implicitly. Figure 9.5
:} shows successive logarithmic power spectra obtained from longitudinal
S vibrations of a steel rod, approximately one meter long and 1.5 cm.
- in diameter in its circular cross section. The accelerometer is
- mounted on one end and the other end is struck sharply with a heavy
§; steel hammer. Through the first three modes the damping rates grow
- guite rapidly but then settle down to nearly constant rates, exhibit-
L ing no demonstrable dependence on frequency from 10 khz. through 50
khz. . This experiment has been repeated many times with much the
same results in all cases.
=20 T T T T T T—I
COF
i |
-3C 1
: | - ‘
ﬁg -40 A - 4
K -30 A
-60 7
i
N -70 Jl ‘
= N
N -80 B
A _af
7 “80
3 ~100 +—
0y C 00 . 3c0oo
— 10 Flg. 9.5
- In reality, this result is guite consistent with freguency pro-
- portional damping in the Euler ~ Bernoulli beam and with our earlier
{: suppositions as to the source of the damping action. If the same as-
o sumptions are made in regard to the internal structure of the rod as
'j{ were made for the beam, the resulting model for vibrations in the rod
:: takes the form of the damped wave equation (constant coefficient case
f only shown here)
‘.
» L
” 2 2
r322 4 2y f ax=6)[ 2Zx,t) - (g, 0) | as -EEZ =0, (9.1)
: ot~ 0 ot ot ox

os z{(»,t) denoting the longitudinal displacement of the rod element
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whose equilibrium center of mass is at x and £(n) an interraction
kernel of the same sort as h(n) used earlier for the beam. Analy-
sis similar to that used for the infinite beam in Section 4 shows
that a damping spectrum of the type observed in Fig. 9.5, i.e., guad-
ratic damping exponent versus fregquency dependence for small o and
asymptotically constant as w - o, results for the infinite rod and,
correspondingly, similar discrete behavior is to be expected for a
finite rod. So we may tentatively accept (9.1) as a viable model
for longitudinal, internally damped vibrations of a rod.

With (2.1) so accepted, we now envision an idealized beam con-
structed, as shown in Figure 9.6, from two such rods rigidly spaced
a distance 2¢ apart, with a mass-less, perfectly flexible, but inex-
tensible central support structure forming the "back - bone" of the
system. Lateral displacements of the structure will be described in
terms of the graph of the locus of the center line, w = w(x,t), as
shown in the figure.

28

-~
W = w(x,t

Fig. 9.6

Using the energy expression

£ (2,22 =§L[ r[22)" . ()
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for longitudinal rod vibrations, we find with use of (9.1) and the
appropriate boundary conditions, e.g.,
5 o2z
SZ(0,t) = 2L, t) = 0 (9.2)
IR 53
in the case of free ends, that for smooth solutions we have
rL L 2
31T N ES -
3E<z,§f> - [ el §?<x,t) - (g, 0y | agax.  (9.2)
~ . + b
¢ 3t or 0 3t 3t
Let z={:1,7), z{x,t) denote the longitudinal displacements of the upper
and lower rods of the pbeanm structure, respectively. Then we find, to
first crder in o, that |
5z 3w 57 54w
e (m,t) = o-8 E (s, ), YR(x,t) = & ~ (2, %)
31 Sx= b 5x<
Lettiny .
. ~ L 5
i 3z ~ 3 raw 5
S(w,TY) = Elz,FEy 4 E(z,!-g-) + rl€9 dgx (9.4)
5t 5% 5t o ot
{
: . 2 d
we have, with p = 2r, IP = pi, EI = 2 R
- e f a2 Y- 2 - 2
2 | g ~e . 2
S(w, Ty = 4 ; Copr T 4 B EI[-— W ] ax (e.s)
3t it At FLoatan- RCOEER
while the dissipation form (9.3) becomes, with )
. = 0200 .
1’1\};”&) = 20 .Q\‘;‘“g), o
o e, an:‘ r ~e e, 2 ‘
SCw, T = oy L R(een) [0 Y (xt) - Mg, 0] agax. (9.6
at ke ¢~ L 2t3x Stz "
cv 0 9
Assuming I = g ise very small in comparison with both p and EI 5

(i.e., we assume . very small and E very large), the condition

X
-+
T
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” “ivative of (9.5 ) with respect to t should be (9.6)
ieads to the equation (3.7), with h(x,¢{) = vh(x-¢{) there, and the
acre~cliated boundary conditions. If IP is not neglected we obtain

l
rt
3
1]
!
v
(X4

the corresponding Rayleigh model with damping term as in the Euler-
bernculll model (3.7). Thus the rod model (9.1) is consistent

with our earlier developed beam models. Significantly, as we remark-
ed at the end of Section 4, for the damped Rayleigh model the h!jh

freguency damping exponent predicted by that model has the same prop-
erties as has been observed in the laboratory (Figure 9.5) and as are
precicied from the model eguation (9.1).
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10. Concluding Remarks.

In this paper we have attempted to:

(1) Show that laboratory beams of various types do exhibit
modes whose damping exponents are proportional to freguency
2t the high end of the spectrum;

(ii) Show that there is a relatively simple mathematical model
which exhibits comparable spectral behavior and whose form
is e:xplainable in terms of plausible physical properties of
the beam;

(iii) Show that numerical calculations using a spline based app-

ronimaticn of our mathematical model yield calculated
speciral values qualitatively conesistent with those ob-

wm
e
3

ned from laboratory experimentation and predicted from
anz.lysis of the mathematical model.

Sorme readers may object that the motivation of the damping term
in our eqguation (3.7) is based on a heuristic, plausibility argument
rather than on the accepted modus cperandi of introducing an approp-
riate constitutive eqguation and deriving the dynamics from that point
of depa“turec jAbout all we can say in defense of ourselves on this
point is that we are probably not the best person equipped to do
*his; we have presented sufficient motivation to allow others who
speciaiize in continuum mechanics to carry out such a program if they
are Irnclined to do so. Along the same lines, we also realize that
cur interpretation of the action of the damping term in terms of fib-
structure of the beam, or comparable action of extended crystal

uctures, may well turn out to be inadequate in the light of other
iﬁf rmation about the manner in which damping forces act in elastic

structures,

(I) 1]
i~

We do, without apology, insist that laboratory measurement of
damping rates, though necessarily flawed to some extent by exogenous
influences, which we have taken some pains to analyze here, must be
the final arbiter in deciding between putative damping mechanisms.
Even spotlessly correct theoretical reasoning cannot ultimately
take precedence - though it could indicate the need for more careful

v

iaboratory work. Hindreds ouf experiments on our part do indicate
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frequency proportional damping at the high end of the spectrum and
some sort of guadratic behavior, or at least the dominance of a dif-
ferent proportionality constant, at lower frequencies. We invite
other interested researchers tc carry out similar experimentation
and rnodel development complementing, or perhaps even replacing, that
reported here.

The reality of near guadratic dependence of the damping expon-
ent on freguency at the low end of the spectrum seems to us to be a
very important question. Just citing the models introduced in this
article, whether or not this phencmenon is real appears to be the
isive factor in choosing the model which we have proposed in pre-
ference to "sguare root" damping as in (2.3) which we have, for the
precent at least, rejected as not adeguately explainable iIn physical
verm: - though we have conceded that it could be justified in terms
.ces covered by travelling waves of a given frequency. If

Q.a
A

al
T cIult be centlusively demonstrated that low freguency modes are
dumped a® rates which bear the same relationship to frequency as the
10y Lty rates as:wcliated with higher frequency modes then the whole
- e gy procese would have to be reconsidered in that light. To

it would seenm to be necessary to ccnduct experi-
ing beams having a large number of low frequency

4
-

Tt geernc to us that the freguency iadependent damping of
1igzher modes apparently applying to longitudinal rod vibraticns is
a critica. test of the theory. It is particularly significant that
thhis mode of damping Is consistent with the very different scrt of
damping observed in the beam and it is intriguing that the mode of

P ing which apparently applies for the rod is what is necessary

preserve controllability by means of finite dimensional controls.
If freguency propeortioral damping exponents did apply to longitudinal

r ns of the rod, those vibrations would be uncontrollable in
either the sense standard for the one dimenzionzal wave equation [ L ]
or thzt which applies to parabolic processes [ M ]. The whole area is
a most intriguing cone. 1If this article should serve to encourage more
researchers to enter the area, even if only to refute our contribu-
ticns, this article will have served its purpose.
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